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MCKP Generalized MCKP

Multiple Choice Knapsack Problem

The multiple-choice knapsack problem (MCKP) is a generalization of the ordinary
knapsack problem, where the set of items is partitioned into classes. The binary choice
of taking an item is replaced by the selection of exactly one item out of each class of
items.

Linear relaxation of the IP:

max
n∑

i=1

m∑
j=1

vijxij

s.t.
n∑

i=1

m∑
j=1

cijxij ≤ B

m∑
j=1

xij = 1 i = 1, . . . , n,

xij ≥ 0 i = 1, . . . , n, j = 1, . . . ,m
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MCKP Generalized MCKP

Why do we consider the lp?
can this lp get a good approximation ratio?
can this lp be solved fast?

The solution obtained from lp is at most 1 group away from the optimum and we can
solve the lp in linear time(MCKP can be solved in O(Bnm) through dynamic
programming).
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MCKP Generalized MCKP

Theorem 1
Sinha and Zoltners proved that a basic solution to the linear program has at most two
fractional variables and in an optimal solution two fractional variables are from the
same group.

The basic solutions to the lp has n + 1 variables since there are n + 1 constraints, then
there are at most n + 1 non-zero variables. Consider the constraint

∑m
j=1 xij = 1, there

will be at most 2 fractional variables and two fractional variables are from the same
group.
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MCKP Generalized MCKP

Theorem 2
If two items i and j in the same group satisfy ci ≥ cj and vi ≤ vj , then lp optimal
solution with xi = 0 exists.
If three items i , j, k in the same group with vi < vj < vk and ci < cj < ck satisfy

vk − vj

ck − cj
≥ vj − vi

cj − ci

then an optimal solution to the lp with xj = 0 exists.

The first case is obvious.
The second case can be observed on the v − c plane.

i

j

k

Items with x ̸= 0 in the optimal solution are on the upper-left convex hull.
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MCKP Generalized MCKP

algorithm for lp

Greedy: initially we select item with the smallest weight in every group(this must be a
feasible solution), then we iteratively move to the "next" item on the LP-extreme of
every group(select item in some group with larger weight and larger value and abandon
the previously selected one, but we have to select the "next" item with maximal
efficiency ∆v

∆c . The efficiency is monotonously decreasing because the LP-extreme
items are one the upper left convex hull), then finally we found that the weight limit is
exceeded when moving to the next item on LP-extreme, then 2 fractional variables are
generated and the final slope is the current efficiency.
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MCKP Generalized MCKP

algorithm for lp

O(nm logm + nm log n): find convex hull for each group, greedily pick items until∑
xijcij = B. (fractional x appears while selecting some item k but current cost

B′ < B − ck)
Can we skip computing the convex hull?
Optimal slope is the incremental efficiency of the last item added in the greedy
algorithm.

Theorem 3
If the optimal slope α∗ is known, then the corresponding optimal solution to the lp can
be determined in O(n) time
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MCKP Generalized MCKP

Now the problem is how to find the optimal slope in linear time.
For each group we determine Mi(α) = argmaxj{vij − cijα}, Mi(α) may contains more
than one items, we define ai = argminj∈Mi (α){cij}, bi = argmaxj∈Mi (α){cij}, if α is the
optimal slope, we have

n∑
i=1

ciai ≤ B ≤
n∑

i=1
cibi

then we can guess a slope α and test whether it is the optimal slope.
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MCKP Generalized MCKP

Algorithm 1: Algorithm Dyer-Zemel
Input: n groups, each group has m items (cij , vij)
Output: optimal slope λ∗.
while true do

for i=1,...,n do
Pair the items in group i two by two as (ij, ik);
Order each pair such that cij ≤ cik breaking ties such that vij ≥ vik ;
if item cij ≤ cik and vij ≥ vik :
Delete item k and pair j with another item.

end
for i=1,...,n do

if the group i has only one item j left:
Decrease the budget B = B − cij ;

end
for all pairs (ij, ik) do

Derive slope λ =
vik−vij
cik−cij

;
λ∗ =the median of the slopes;

end
if λ∗ is the optimal slope then

return λ∗;
end
if
∑m

i=1 ciai ≥ B then
for all pair (ij, ik) with λ ≤ λ∗ delete item k;

end
if
∑m

i=1 cibi < B then
for all pair (ij, ik) with λ ≥ λ∗ delete item j;

end
end
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MCKP Generalized MCKP

time complexity
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1 MCKP

2 Generalized MCKP
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MCKP Generalized MCKP

Generalized MCKP

The difference between generalized MCKP and MCKP is that we do not only demand
a single item to be chosen from each group, but any strict cardinality constraint.

lp:

max
n∑

i=1

m∑
j=1

vijxij

s.t.
n∑

i=1

m∑
j=1

cijxij ≤ B

m∑
j=1

xij = p i = 1, . . . , n,

xij ≥ 0 i = 1, . . . , n, j = 1, . . . ,m
xij ≤ 1 i = 1, . . . , n, j = 1, . . . ,m
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MCKP Generalized MCKP

a more linear programming perspective

The greedy algorithm is confusing for p > 1 case, instead we consider the lagrangian
dual of the LP:

min
λ

(
max

x

n∑
i=1

m∑
j=1

vijxij + λ(B −
n∑

i=1

m∑
j=1

cijxij)

)

s.t.
m∑

j=1
xij = p i = 1, . . . , n,

xij ≤ 1 i = 1, . . . , n, j = 1, . . . ,m
xij ≥ 0 i = 1, . . . , n, j = 1, . . . ,m
λ ≥ 0

This is a minimax parametric optimization problem.
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MCKP Generalized MCKP

lagrangian dual

Lagrangian dual is an upperbound for the primal lp and has the same optimum as
primal lp if and only if complementary slackness condition(λ(B −

∑∑
cijxij) = 0) is

satisfied.

Assume that λ is known(we solve this optimization problem by enumerating λ), then
the remaining problem is:

max
x

n∑
i=1

m∑
j=1

aijxij

s.t.
m∑

j=1
xij = p i = 1, . . . , n,

xij ≤ 1 i = 1, . . . , n, j = 1, . . . ,m
xij ≥ 0 i = 1, . . . , n, j = 1, . . . ,m

where aij = vij − λcij
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MCKP Generalized MCKP

p-level

The remaining problem seems independent for each group, the optimal solution can be
obtained by sorting aij in each group and choose top p items in each group. Clearly
xij = 1 for top p items in each group and the rest xij = 0 there is no fractional variable.

for each item in some group, vij − λcij is a line. For each λ, we want to find the top p
lines. This is the k-level problem, can be solved in O(m logm + mp1/3).∑

vij − λcij is a piece-wise linear convex function, the number of breakpoints is
O(mp1/3).
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MCKP Generalized MCKP

After running p-level algorithm for each group, our problem becomes:

Given n piece-wise linear convex functions f1(λ), . . . , fn(λ), find
argmaxλ Bλ+

∑n
i=1 fi(λ).

Since Bλ+
∑n

i=1 fi(λ) is also a piece-wise linear convex function, we can easily solve
this problem.

p-level algorithm has time complexity O(m logm + mp1/3) and we use p-level for each
group, so the preprocessing has time complexity O(nm logm + nmp1/3); the merge
process uses a priority queue of at most n elements and the number of breakpoints for
p-level has an upperbound O(mp1/3), the total time complexity is
O(nm logm + mnp1/3 log n).
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MCKP Generalized MCKP

Theorem 4
when p > 1 a basic solution to the linear program has at most two fractional variables
and in an optimal solution two fractional variables are from the same group.

Lagrangian dual has the same optimum as primal lp if and only if complementary
slackness condition(λ(B −

∑∑
cijxij) = 0) is satisfied. Since λ > 0 in our algorithm,

we need to make sure
∑∑

cijxij = B, this situation is very similar to∑n
i=1 ciai ≤ B ≤

∑n
i=1 cibi in p = 1 case.
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MCKP Generalized MCKP

The objective function can be rewritten as
min

∑
i∈[n]

∑
j:top p vij + λ(B −

∑
i∈[n]

∑
j:top p cij). The left derivative at λ∗ is negative

and right derivative is positive, that means B −
∑

i∈[n]
∑

j:top p cij ≤ 0 holds for the left
line segment of λ∗ and B −

∑
i∈[n]

∑
j:top p cij ≥ 0 holds for the right line segment. So

obviously a linear combination of xij of those two items because of which this
breakpoint λ∗ is generated can fully fill the budget B.
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