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Motivation & References
Motivation: Reachability and Büchi games are important in system verification and
testing. Computing the winning set of Büchi games is a central problem in computer
aided verification with a large number of applications.
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Reachability Game

A reachability game is a 2-player (namely P0 and P1) game on a directed finite graph.
Game graph: directed graph G({V0 ∪ V1},E).({V0,V1}is a partition of V)
Target set: target set is T ⊆ {V0 ∪ V1}.
A play P is a (finite or infinite) path in the game graph beginning at the initial vertex s.

If v ∈ V0, P0 moves along an outgoing edge of v. Otherwise, P1 takes the move.
Definition of winning: P0 wins if T ∩ P ̸= ∅, otherwise P1 wins.
Memoryless strategy: a strategy for P0 is a mapping α : V0 → V that defines how P0

should extend the current play.
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Example for Reachability Game

Rectangle vertices are in V1, circles are in V0;
Vertices in T are red, the initial vertex s is blue.
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6

A winning play for P0 is (5, 3, 1)
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Algorithm for Reachability Game

T

Rank 1

• if s is in T, P0 wins; 0 moves are needed for P0 to win.
• if s ∈ V0 and s has at least one outgoing edge to u ∈ T, P0 wins in one step;
• if s ∈ V1 and all of s’s outgoing edges go to u ∈ T, P0 wins in one step;
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Algorithm for Reachability Game

We defined Rank 0 and Rank 1 already, now we define Rank i.

An unranked vertex v now gets Rank i:
if v ∈ V0 and there is an edge e(v, u) u ∈ Ri−1;
if v ∈ V1 and for every edge e(v, u) we have u ∈

∪i−1
j=0 Rj;

Ri := {v ∈ V| P0 can force a visit from v to a vertex in T in i steps}

Define Reachability set of T for P0, Reach(T, 0) :=
∪n−1

i=1 Ri
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Algorithm for Reachability Game

1 2 3

4 5 6 • R0 = {1, 2};
• R1 = {5};
• R2 = {3};
• R3 = {4};
• R4 = {6};

For simplicity, denote u ∈ Rk by Rank[u]=k.
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An O(m) Algorithm for Reachability Game
Algorithm 1: Reachability for P0
Data: game graph G, target set T
Result: Rank[|V|]

1 Q:= an empty queue;
2 Rank[|V|],count[|V|]:= all 0s array;
3 Q.push(T);
4 while Q is not empty do
5 u:=Q.front,Q.pop;
6 for e(v, u) ∈ E do
7 if v ∈ V0 and v has not been visited then
8 Rank[v]:=Rank[u]+1; Q.push({v})
9 else if v ∈ V1 then

10 count[v]:=count[v]+1;
11 if count[v]=Out Degree of v then Rank[v]:=Rank[u]+1; Q.push({v}) ;
12 end
13 end
14 end

Every edge is used at most once.
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Type

T1,T2, ...,Tk are disjoint subsets of V, now we want to compute Reachability of each one
of them.

T1 T2 T3

Definition A type of vertex x is a tuple
(y1, . . . , yk), where each yi ∈ {0, 1}, such
that yi = 1 iff x is in Reach(Ti, 0).
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Compute Types

• Run reachability algorithm for every Ti, O(km);
• Compute simultaneously.
• Can it be done in linear or nearly linear time?
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Minimum Base

The minimum base of T is the minimum subset of T which can generate the same
Reachability set as T.

Computing the minimum base is NP-hard.

Set cover problem: Given a set S of n elements, a collection S1,S2, ..., Sm of subsets of S,
and a number K, does there exists a collection of at most k of these sets whose union is
equal to all of S.
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Minimum Base

Proof:
We prove that the decision problem for minimum base is NP-Complete.
The decision problem L is the following: Can we find a base with at most k vertices?

1. L is in NP.
2. set cover problem(which is NP-Complete) can be reduced to L in polynomial time.

• Construct a Reachability game graph G(V0,E). There are m vertices in T representing
m subsets in set cover problem, n vertices not in T representing n elements in S.

• If subset Si contains element xj, connect an edge from vertex representing Si to vertex
representing xj in T.

13 / 25



Minimum Base

S1 S2 S3

x1 x2 x3 . . .

S1 = {x1, x2}
S2 = {x1, x3}

So L is NP-Complete. The minimum base problem is NP-Hard.

14 / 25



Büchi Game

Definition A Büchi game is a game G = (G, s,T) where G is the Reachability game
graph, s is the initial vertex, T ⊆ V is the target set as in Reachability game.

Play: The definition of play in Büchi Game is the same as in Reachability game.
Definition of winning: We assume the play P is infinite here. If there exists infinitely

many vertices v ∈ T in P, P0 wins. Otherwise P1 wins.
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Example for Büchi Game

1 2 3

4 5 6 7

P0 is always winning on this game
graph.
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2 3

45

6
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Algorithm for Büchi Game 1

G
T

Reach(T, 0)
If v /∈ Reach(T, 0) ∪ T, v can
not reach T, P0 will lose.

Some vertices in T can not
reach Reach(T, 0) ∪ T, P0 will
also lose on these vertices.
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Algorithm for Büchi Game 1

G
T1

A1

Reach(T1, 0)

Reach(T, 0)\Reach(T1, 0)
A1 = {v ∈ T|v can’t reach
T ∪ Reach(T, 0)}

Some vertices in T1 can only
reach Reach(T, 0)\Reach(T1, 0)

We find A2 = {v ∈ T1|v can’t
reach T1 ∪ Reach(T1, 0)}
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Algorithm for Büchi Game 1

G

A1 Reach(T, 0)\Reach(T1, 0)

Winning set for P0

We repeat this process until Tk
does not shrink.

The remaining part of
Tk ∪ Reach(Tk, 0) is the
winning set for P0.
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Algorithm for Büchi Game 1

• How to find A1

A1 = {v ∈ T|v can’t reach T ∪ Reach(T, 0)}
= {v ∈ T|v can only reach V\{T ∪ Reach(T, 0)}}
= Reach(V\{T ∪ Reach(T, 0)}}, 1)

• Time complexity
O(m) to find Ai, at most O(n) times. Worst-case O(nm).

Can it be done in nearly linear time?
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Algorithm for Büchi Game 2

G

T

C0 ∪ C1

Reach(C0 ∪ C1, 1)

Compute C0 and C1.

C0 is a set of vertices in V0\T
having all outgoing edges to
vertices in V\T.
C1 is a set of vertices in V1\T
having an outgoing edge to
vertices in V\T.

Compute Reach(C0 ∪ C1, 1)
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Algorithm for Büchi Game 2

G

T

C0 ∪ C1

A1 Reach(A1, 0)

Some vertices in Reach(C0 ∪ C1, 1)
can reach A1.

Compute Reach(A1, 0).

{C0 ∪ C1}\Reach(A1, 0) is the set
of vertices which can’t reach T.
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Algorithm for Büchi Game 2

G

T

C0 ∪ C1

A1 Reach(A1, 0)

S = {C0 ∪ C1}\Reach(A1, 0) is the
same as V\{T ∪ Reach(T)} in
Algorithm 1.

Then we can compute Reach(S, 1)
to delete some losing vertices for
P0 in T.

Repeat the same process on
G\{T\Reach(S, 1)}
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Algorithm for Büchi Game 2

• Time complexity
O(m) to find S, at most O(n) times. Worst-case O(nm).

• Advantage
Algorithm 2 is preferable to algorithm 1 when C0 ∪ C1 is small, algorithm 1 is

preferable when T is small.
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The End

25 / 25


	Motivation & References
	Reachability Game
	Büchi Game

