one-sided crossing minimization

丛宇

April 22, 2024

Overview

1. problem

2. heuristics

3. exact

Some definition

1、bipartite graph (二部图):

A graph G = (V, E) with vertex set V and edge set $E \subseteq V \times V$ is called bipartite if there is a partition of V into two disjoint non-empty sets L_1 and L_2 such that $V = L_1 \cup L_2$ and $E \subseteq L_1 \times L_2$.

Some definition

- 2, some properties of the bipartite graph:
 - (1) In these drawings the vertices are arranged on two "layers".
 - (2) Edges are drawn straight between vertices on adjacent layers.
 - (3) Edges between vertices on the same layer are not permitted.
 - (4) No point between layers may lie on more than two edges.

Wrong

Right

1-Sided Crossing Minimization problem

Instance: a bipartite graph $G = (L_1, L_2; E)$, an integer k, and a fixed ordering π_1 for the vertex set L_1 on the top layer.

Question:Is there a 2-layer drawing of G that respects π_1 and that has at most k crossings?(At first,we don't consider multiple edges.We will handle it in the end.)

Some Facts and definitions

Definition 1:Consider a problem instance <G, π_1 , k>, and let v and w be vertices in L2. The crossing number \mathbf{c}_{vw} is the number of crossings that edges incident with v make with edges incident with w in drawings having v < w; the crossing number \mathbf{c}_{wv} is for w < v. $(\mathbf{c}_{vw}$ 的定义)

Input: $|L_2| \times |L_1|$ adjacency matrix A of G *Output*: $|L_2| \times |L_2|$ matrix C

- 1. Augment adjacency matrix A as described above.
- 2. **for** v = 1 to $|L_2|$
- 3. **for** w = 1 to $|L_2|$
- 4. **if** $v \neq w$
- 5. $c_{v,w} = 0$ /* initialize $c_{v,w}$ */
- 6. $w' = l_w$ /* start examining the neighbors w' of w starting with the leftmost neighbor, l_w */
- 7. **while** $w' \le r_w$ and $w' < r_v$ and $c_{v,w} \le k$ **do**
- 8. $c_{v,w} = c_{v,w} + r_{v,w'}$ /* increment $c_{v,w}$ by the number of crossing points on edge (w, w') created by edges incident to v */
- 9. $w' = p_{w,w'}$ /* advance to the next neighbor of w */

如果计算过程中出现大于k的值,则停止继续计算,因为在后续的搜索中,如果有一个cw大于k,那么就剪枝,所以大于k的数,只需要知道他比k大即可,不需要知道具体的教字。

dynamic programming

直接用 dp 求最优解, $O(poly(n)2^n)$

想要一个很快的 dp 但是不用得到最优解.

限制我们能做的操作. 求最优解的 dp 中我们可以把顶点插入任何地方, 如果我们插入的区间不能重叠, 操作之间就没有影响.

dp

dp(i) 表示前 i 个顶点交叉数最少是多少个. $\delta(i,j)$ 表示在当前排列下把第 i 个点插入到第 j 个点前面的交叉数减少量.

$$\mathrm{dp}_k(i) = \begin{cases} 0, & \text{if } i = 1, \\ \delta_k(1, 2), & \text{if } i = 2, \\ \max_{1 \leqslant q \leqslant i - 1} \{ \mathrm{dp}_k(q) + \delta_k(q + 1, i) \}, & \text{otherwise.} \end{cases}$$

预处理和 dp 都是 $O(n^2)$

preprocessing

FTP

后面考虑的都是 OSMC 的判定版本, 交叉点数是否小于等于 k. 有几个结果:

- $\tilde{O}(1.618^k)$
- $\tilde{O}(1.46^k)$
- $\tilde{O}(2^{O(\sqrt{k}\log k)})$ subexponential weighted feedback arc set.

1.618 and 1.46

Step 3. Building and exploring the search tree.

①Label the root of the tree with (D, B) where D = D_0 and B = B_0

 $\begin{array}{c} D,B \\ (v,w) \ : \ vw,wv \not\in E(D) \ \text{and} \ c_{vw} \neq c_{wv} \\ \\ v < w \\ \\ w < v \\ \\ D_2 = \operatorname{trans. \ clos. \ of} \ D \cup vw \ , \\ B_1 = B - c_{vw} - \dots \end{array}$

②In general, for a non-leaf node labeled (D, B), D₁ = trans. clos. of DU rw, choose a pair (v, w) such that **D contains no**edge joining v and w and such that $\mathbf{c}_{vw} \neq \mathbf{c}_{wv}$ (说明并不在集合C中,也不在D中,是一个 $\mathbf{c}_{vw} \neq \mathbf{c}_{wv}$ 的unsuited pair)

③由于选中的v和w只有两种可能的排列, v<w和w<v,所以搜索树上的每个节点都有两

④ D_1 = transitive closure of DUvw B_1 = $B - c_{vw} - \sum_{pq} c_{pq}$, 其中 $c_{pq} \neq c_{qp}$

D₂ = transitive closure of DUvw

- c_{wv} - ∑_{pq} c_{pq}, 其中c_{pq} ≠c_{qp}

⑤搜索结束条件:

(I)不存在unsuited pair (v, w)∉ C

(II) $B_1 < 0$ 且 $B_2 < 0$

⑥有解意味着存在某个叶子节点(solution leaf),使得∀(v,w)如果 vw ∉ D and wv ∉ D,那么(v,w)∈C,即所有的点对的序列要么在D中,要么在C中,除了集合C不存在未排序的点对。

⑦如果有一个solution leaf,那么输出D的拓扑排序,如果有些点并不在D中,说明这些点的任意排列对交叉数并无影响,可以任意排列。

1<3是natural ordering, (1,2)以及(2,3)会在集合C 中,2的位置可以是任意 的。

 $B_2=B$

8 update the minimum number of crossings found so far to k – B, where B is the budget of the leaf, and update the best ordering so far to π_2 .通过这个方法,可以找到一个最优排列。

weighted feedback arc set

