# Primal-Dual Method 

Yu Cong

March 8, 2022

## Overview

## 1. Classical Primal-Dual Method

2. Primal-Dual for Approximation Algorithms
2.1 approximation rate
3. Function $f(S)$

## Classical Primal-Dual Method

Primal LP problem:

$$
\begin{aligned}
\min & c^{\top} x \\
\text { s.t. } \quad A x & \geq b \\
x & \geq 0
\end{aligned}
$$

Dual problem:

$$
\begin{array}{r}
\max \quad b^{T} y \\
\text { s.t. } \quad A^{T} y \leq c \\
y \geq 0
\end{array}
$$

Optimal solutions for primal and dual problems satisfy complementary slackness conditions(CSC):

$$
\begin{aligned}
& y_{i}\left(A_{i} x-b_{i}\right)=0 \\
& x_{j}\left(A^{j} y-c_{j}\right)=0
\end{aligned}
$$

$A_{i}$ : the $i$ th row of $A$
$A^{j}$ : the $j$ th column of $A$

Given a feasible dual solution $y$
for some $y_{i}>0, A_{i x}-b_{i}=0$; for $A^{j} y-c_{j}<0$, we have $x_{i}=0$.
$I=\left\{i \mid y_{i}=0\right\}, J=\left\{j \mid A^{j} y-c_{j}=0\right\}$
restricted primal problem:

$$
\begin{aligned}
z=\min & \sum_{i \notin I} s_{i}+\sum_{j \neq J} x_{j} \\
\text { s.t. } \quad A x_{i} & \geq b_{i} \quad i \in l \\
A x_{i}-s_{i} & =b_{i} \quad i \notin l \\
x & \geq 0 \\
s \geq 0 &
\end{aligned}
$$

if $z=0$, the primal feasible solution $x$ obeys the CSC, $x$ is the optimal solution; if $z \neq 0$, $x$ violates some primal constrains or some CSC. $y$ is less than OPT of dual.
dual of restricted primal problem:

\[

\]

since OPT of restricted primal $>0$, there is a dual solution $y^{\prime}$ s.t. $b^{T} y^{\prime}>0$. $y^{\prime \prime}=y+\epsilon y$, where $\epsilon \leq \min _{i \neq 1: y_{i}^{\prime}<0}-y_{i} / y_{i}^{\prime}$ and $\epsilon \leq \min _{j \neq J: A^{i} y^{\prime}>0} \frac{c_{j}-A^{\prime} y}{A^{\prime} y^{\prime}}$ repeat this process until OPT of restricted primal problem is 0 .

## Primal-Dual for Approximation Algorithms

2 problems with classic primal-dual method:

- linear programming
- how to find a solution $y$ for dual of restricted primal problem.

Hitting set problem:
Hitting set is an equivalent reformulation of Set Cover.
Given subsets $T_{1}, \ldots, T_{p}$ of a ground set $E$ and given a nonnegative cost $c_{e}$ for every element in $E$, find a minimum-cost subset $A$ s.t. $A \cap T_{i} \neq \emptyset$ for $i=1, \ldots, p$.

Examples:

- undirected s-t shortest path: $\delta(S)$ needs to be hit if $s \in S, t \notin S$.
- minimum spanning tree: $\delta(S)$ needs to be hit for all $S$.

Hitting set problem can be formulated with integer programming(IP).

IP for undirected s-t shortest path:

$$
\begin{aligned}
& \min \quad \sum_{e \in E} c_{e} x_{e} \\
& \text { s.t. } \quad \sum_{e \in \delta(S)} x_{e} \geq f(S) \quad S \subset V \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

* $\delta(S)$ : a cut on $S$ and $V-S$
* $A=\left\{e: x_{e}=1\right\}$
* $y$ : dual variable
* $T_{1}, \ldots, T_{p}$ sets to be hit
dual of its LP relaxation:

$$
\begin{gathered}
\max \sum_{S: f(S)=1} y_{S} \\
\text { s.t. } \quad \sum_{S: e \in \delta(S)} y_{S} \leq c_{e} \quad e \in E \\
y_{S} \geq 0
\end{gathered}
$$

start with $y=0$, if there is any $\delta(S): f(S)=1$ that $|A \cap \delta(S)|=0$, we increase the corresponding dual variable $y_{s}$ :

$$
y_{S}=\min _{e \in \delta(S)}\left\{c_{e}-\sum_{T \neq S: e \in \delta(T)} y_{T}\right\}
$$

if $\sum_{S: e \in \delta(S)} y_{S} \leq c_{e}$ is satisfied, set corresponding primal variable $x_{e}=1$. some edge $e \in \delta(S)$ will be add to $A$.

| 1 | $y \leftarrow 0$ |
| :--- | :--- |
| 2 | $A \leftarrow \emptyset$ |
| 3 | While $\exists k: A \cap T_{k}=\emptyset$ |
| 4 | Increase $y_{k}$ until $\exists e \in T_{k}: \sum_{i: e \in T_{i}} y_{i}=c_{e}$ |
| 5 | $A \leftarrow A \cup\{e\}$ |
| 6 | Output $A$ (and $y$ ) |

## Example



| cuts | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| sa,sc | $+1(\mathrm{sa})$ |  |  |  |  |
| sa,cd |  |  |  |  |  |
| $\mathrm{sa,dt}$ |  |  |  |  |  |
| $\mathrm{ab}, \mathrm{sc}$ |  | $+1(\mathrm{sc})$ |  |  |  |
| $\mathrm{ab}, \mathrm{cd}$ |  |  | $+1(\mathrm{ab})$ |  |  |
| $\mathrm{ab}, \mathrm{dt}$ |  |  |  |  |  |
| $\mathrm{bt}, \mathrm{sc}$ |  |  |  |  |  |
| $\mathrm{bt}, \mathrm{cd}$ |  |  |  | $+1(\mathrm{~cd})$ |  |
| $\mathrm{bt}, \mathrm{dt}$ |  |  |  |  | $+1(\mathrm{dt})$ |

## design rules

- reverse delete step
- minimal violated set rule
- uniorm increase rule

```
1 y
2 A\leftarrow\emptyset
3 l
4 \text { While A is not feasible}
5 l}\leftarrowl+
6}\quad\mathcal{V}\leftarrow\operatorname{VIOLATION}(A
7ncrease }\mp@subsup{y}{k}{}\mathrm{ uniformly for all }\mp@subsup{T}{k}{}\in\mathcal{V}\mathrm{ until }\exists\mp@subsup{e}{l}{}\not\inA:\mp@subsup{\sum}{i:\mp@subsup{e}{\ell}{}\in\mp@subsup{T}{i}{}}{}\mp@subsup{y}{i}{}=\mp@subsup{c}{\mp@subsup{e}{l}{}}{
8 A}\leftarrowA\cup{\mp@subsup{e}{l}{}
9 For j}\leftarrowl\mathrm{ downto 1
10 if A-{\mp@subsup{e}{j}{}}\mathrm{ is feasible then }A\leftarrowA-{\mp@subsup{e}{j}{}}
11 Output A (and y)
```


## approximation rate

$$
\begin{aligned}
c(A) & =\sum_{e \in A} c_{e} \\
& =\sum_{e \in A} \sum_{i: e \in T_{i}} y_{i} \\
& =\sum_{i=1}^{p}\left|A \cap T_{i}\right| y_{i}
\end{aligned}
$$

let $\alpha=\max \left\{\left|A \cap T_{i}\right|\right\}$. Since $\sum y_{i} \leq O P T$, we get

$$
c(A) \leq \sum_{i=1}^{p} \alpha y_{i} \leq \alpha O P T
$$

Define minimal augmentation $B$ of an infeasible solution $A$ : $B$ is a feasible solution that includes $A$ and for any subset $C \subset B-A, A \cup C$ is not a feasible solution.

For any final primal solution $A_{f},\left|B \cap T_{i}\right| \geq\left|A_{f} \cap T_{i}\right|$ holds if $B$ is the maximum minimal augmentation set.

$$
\beta=\max _{A: \exists T_{i}:\left|T_{i} \cap A\right|=0} \max _{B}|B \cap T(A)|
$$

$T(A)$ is the $T_{i}$ selected by the algorithm for infeasible solution $A$.

Consider the violation set $\mathcal{V}_{j}, y_{i}=\sum_{j: T_{i} \in \mathcal{V}_{j}} \epsilon_{j}$ suppose now there is $p$ violated cuts and $/$ violated sets.

$$
\begin{aligned}
\sum_{i=1}^{p} y_{i} & =\sum_{i=1}^{p} \sum_{j: T_{i} \in \mathcal{V}_{j}} \epsilon_{j} \\
& =\sum_{j=1}^{l}\left|\mathcal{V}_{j}\right| \epsilon_{j} \\
\sum_{i=1}^{p}\left|A_{f} \cap T_{i}\right| y_{i} & =\sum_{i=1}^{p}\left|A_{f} \cap T_{i}\right| \sum_{j: T_{i} \in \mathcal{V}_{j}} \epsilon_{j} \\
& =\sum_{j=1}^{l}\left(\sum_{T_{i} \in \mathcal{V}_{j}}\left|A_{f} \cap T_{i}\right|\right) \epsilon_{j}
\end{aligned}
$$

Compare $\sum_{j=1}^{\prime}\left(\sum_{T_{i} \in \mathcal{V}_{j}}\left|A_{f} \cap T_{i}\right|\right) \epsilon_{j}$ with $\sum_{j=1}^{\prime}\left|\mathcal{V}_{j}\right| \epsilon_{j}$.

$$
\sum_{i=1}^{p}\left|A_{f} \cap T_{i}\right| \leq \gamma\left|\mathcal{V}_{j}\right|
$$

then

$$
\begin{aligned}
\sum_{i=1}^{p}\left|A_{f} \cap T_{i}\right| y_{i} & =\sum_{j=1}^{l}\left(\sum_{T_{i} \in \mathcal{V}_{j}}\left|A_{f} \cap T_{i}\right|\right) \epsilon_{j} \\
& \leq \sum_{j=1}^{l} \gamma\left|\mathcal{V}_{j}\right| \epsilon_{j} \\
& =\gamma \sum_{i=1}^{p} y_{i}
\end{aligned}
$$

Again consider minimal augmentation $B$ : $\max \left|B \cap T_{i}\right| \geq\left|A_{f} \cap T_{i}\right|$ holds, change $\left|A_{f} \cap T_{i}\right|$ to $\left|B \cap T_{i}\right|:$

$$
\sum_{i=1}^{p}\left|A_{f} \cap T_{i}\right| \leq \sum_{T_{i} \in \mathcal{V}(A)}\left|B \cap T_{i}\right| \leq \gamma|\mathcal{V}(A)|
$$

$\gamma$ is the approximation rate.

## Example

prove that the algorithm for s-t shortest path problem above gives the optimal solution.

$$
\beta=\max _{A: \exists T_{i}:\left|T_{i} \cap A\right|=0} \max _{B}|B \cap T(A)|
$$

the algorithm considers only one infeasible cut $\delta(S)$ and $s \in S$ and $S$ is minimal. After increasing the corresponding dual variable only one edge will be added to $A$, so the minimal augmentation $B \cap T(A)=1$.

## 0-1 Function $f(S)$

$$
\begin{gathered}
\min \quad \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } \quad \sum_{e \in \delta(S)} x_{e} \geq f(S) \quad S \subset V \\
x_{i} \in\{0,1\}
\end{gathered}
$$

To formulate another problem, only need to change the definition of $f(S)$.
$0-1$ function: $f: 2^{V} \rightarrow\{0,1\}$

## properties

Maximality: If $A \cap B=\emptyset, f(A \cup B) \leq \max (f(A), f(B))$.
A violated set(cut) for $A$ is a connected component of $G(V, A)$
downward monotone: If $f(S) \leq f(T)$ for all $S \supseteq T \neq \emptyset$.
0-1 proper function:

- $f(V)=0$
- $f$ satisfies the Maximality property.
- $f(S)=f(V-S)$ for all $S \subseteq V$


## downward monotone function

Example: edge-covering problem:
$f(S)=1$ iff. $|S|=1$. satisfies downward monotone property.
Primal-Dual method gives a 2-approximation algorithm for edge covering. (use
$\left.\beta=\max _{A: \exists T_{i}| | T_{i} \cap A \mid=0} \max _{B}|B \cap T(A)|\right)$
Theorem 1 Primal-Dual algorithm gives a 2-approximation algorithm with any downward monotone function.

$$
\sum_{S \in \mathcal{V}(A)}|B \cap \delta(S)| \leq \gamma|\mathcal{V}(A)|
$$

prove $\gamma=2$
construct a graph $H$ by taking the graph $(V, B)$ and shrinking the connected component of $(V, A)$. $(H$ is a forest)
$W=\left\{w \mid f\left(S_{w}\right)=1\right\}$

$$
\sum_{v \in W} d_{v} \leq 2|W|
$$

Lemma connected components in $H$ has at most one vertex $v$ such that $f\left(S_{v}\right)=0$. (prove by contradiction)
$c$ is the number of connected components in $H$.

$$
\sum_{v \in W} d_{v} \leq \sum_{v \in H} d_{v}=2(|H|-c) \leq 2|W|
$$

## $0-1$ proper function

complementarity for 0-1 proper function which satisfies Maximality property, if $f(S)=f(A)=0$ for $A \in S$ then $f(S-A)=0$.
proof Suppose $f(S-A)=1$.
$f(V-S)=f(S)=0, f(V-A)=f(A)=0, f(V-S+A)=f(S-A)=1$. Function $f$ satisfies Maximality property: $1=f(V-S+A) \leq \max (f(V-A), f(A))=0$, a contradiction.

## $0-1$ proper function

Example generalized steiner tree: minimum forest that connects all vertices $T_{i}$ for $i=1, \ldots, p$.
$f(S)=1$ if $\exists i \in\{1,2, \ldots, p\}$ s.t. $S \cup T_{i} \neq \emptyset$ and $S \cup T_{i} \neq T_{i}$.
$\beta=\max _{A: \exists T_{i}:\left|T_{i} \cap A\right|=0} \max _{B}|B \cap T(A)| . \beta$ can be $\mid V-1$. (Consider a complete graph.
Each edge has cost 1. At the first step of primal dual algorithm, $A=\emptyset$, $|B \cap T(A)|=\mid V-1)$

Theorem 2 Primal-dual algorithm gives a 2-approximation algorithm for IP with any 0-1 proper function.

Lemma $1 f$ is $0-1$ proper function, $A$ is any feasible solution. $R=\{e \mid A-e$ is feasible $\}$, then $A-R$ is feasible.
proof


Lemma 2 No leaf $v$ of $H$ satisfies $f\left(S_{v}\right)=0$.
proof Suppose some leaf $v$ satisfies $f\left(S_{v}\right)=0$, let $C$ be the connected component of $(V, B)$ that contains $S_{v}$. Since $B$ is feasible, $f(C)=0$. Since $f\left(S_{v}\right)=0$ and by complementarity property, $f\left(C-S_{v}\right)=0$. But there is an edge in $B$ that connects $C-S_{v}$ and $S_{v}, B$ is the minimal augmentation, a contradiction.

## Proof of Theorem 2.

By Lemma 2, all vertices with degree 1 are in $W$.

$$
\sum_{v \in W} d_{v}=\sum_{v \in H} d_{v}-\sum_{v \notin W} d_{v} \leq 2(|H|-1)-2(|H|-|W|)=2|W|-2
$$

## Thank you

